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Abstract- 

The growing demand for sustainable agriculture 

necessitates the integration of intelligent systems to 

automate crop monitoring and pest control. In this 

paper, we propose a web-based intelligent pest 

classification system that leverages deep learning 

techniques, specifically Convolutional Neural 

Networks (CNN), for accurate image-based pest 

identification. The system is built using the Django 

web framework, enabling end-users—such as 

farmers, researchers, and agricultural workers—to 

upload pest images and receive instant classification 

results.The backend model is trained on a labeled 

dataset of pest images and optimized using modern 

deep learning practices. Upon training, the model is 

capable of classifying various pest species with high 

accuracy. The application also includes user-centric 

features such as registration, secure login, and 

password recovery via OTP-based email verification, 

enhancing the system’s usability and security. The 

training module allows administrators to retrain the 

model periodically, and visual performance metrics 

such as accuracy graphs and loss curves are displayed 

for interpretability.The integration of a deep learning 

model with a user-friendly web interface 

demonstrates the feasibility of deploying intelligent 

agricultural tools at scale. This work contributes to 

digital agriculture by providing a robust, accessible, 

and scalable solution for pest detection and 

management. 
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I. INTRODUCTION 
 

Agriculture remains one of the most essential sectors 

globally, ensuring food supply, employment, and 

economic stability. However, one of the persistent 

challenges that agricultural communities face is the 

infestation of crops by pests. These pests not only  

 

 

 

reduce the quality and quantity of agricultural output 

but also lead to increased reliance on chemical 

pesticides, which can harm the environment and 

public health. According to recent studies, pest-

related losses account for a significant portion of 

global crop damage annually, directly affecting 

farmers' income and food availability [3], [4]. 

Traditional pest identification methods depend 

heavily on manual observation and domain expertise. 

These methods are not only time-consuming but also 

suffer from inconsistencies due to human error and 

subjective interpretation. Moreover, the availability 

of trained entomologists in rural or remote areas is 

often limited. These limitations necessitate the 

development of automated, intelligent solutions for 

real-time pest detection and classification that are 

both scalable and accessible [8], [9]. 

With the advancement of Artificial Intelligence (AI), 

deep learning—particularly Convolutional Neural 

Networks (CNNs)—has revolutionized image 

classification across numerous domains. In 

agriculture, CNNs have been successfully applied to 

tasks such as leaf disease detection, fruit quality 

analysis, and pest classification due to their ability to 

learn complex visual features from image data [1], 

[2], [5], [10]. Unlike traditional machine learning 

models that require handcrafted features, CNNs 

automatically extract and learn hierarchical features, 

making them highly effective for pest detection tasks 

that involve diverse visual patterns. 

In parallel, modern web development frameworks 

like Django have made it easier to deploy machine 

learning models in user-friendly web interfaces. 

Django, a high-level Python web framework, 

promotes rapid development, clean architecture, and 

integration with AI libraries such as TensorFlow and 

PyTorch [6], [7]. When combined with deep learning, 

Django enables the creation of intelligent web 

applications that bring powerful AI models to end-

users—be it farmers, agricultural officers, or 

researchers—through simple web browsers without 

needing technical expertise. 

In this paper, we propose an intelligent, web-based 

pest classification system that integrates a CNN 
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model with the Django framework to perform real-

time pest image classification. Users can register into 

the system, securely log in, upload pest images, and 

receive instant classification predictions. The 

platform also includes features such as OTP-based 

email verification for password reset, enhancing 

security and accessibility [13]. An administrative 

interface allows retraining of the CNN model on 

updated datasets and displays training performance 

through visual plots like accuracy and loss curves [6], 

[12]. This modular design makes the system 

adaptable for future enhancements, such as support 

for multiple languages, larger datasets, and mobile 

deployment. 

The proposed system contributes significantly to 

smart agriculture and precision farming by offering a 

scalable, cost-effective, and intelligent tool for 

automated pest detection. By reducing dependence on 

manual pest identification and facilitating early 

intervention, the platform can help minimize crop 

losses and promote sustainable agricultural practices 

[9], [11], [14]. The integration of deep learning and 

web-based technology ensures that this solution can 

be deployed in real-world agricultural environments, 

empowering farmers with the tools needed for 

efficient pest management. 

 

II. LITEARTURE SURVEY 
 

Agricultural productivity is significantly impacted by 

pest infestations, which lead to substantial economic 

losses worldwide. Early and accurate pest detection is 

essential for effective pest control, reducing crop 

damage, and minimizing the overuse of pesticides. In 

recent years, numerous studies have focused on 

automating pest identification using computer vision 

and machine learning techniques. This section 

discusses key research works in pest detection, deep 

learning applications in agriculture, and web-based 

systems for intelligent pest classification. 

Li et al. [1] presented a pest classification system 

based on an improved YOLOv5 deep learning model. 

Their approach demonstrated efficient real-time 

object detection and localization, especially in 

complex farm environments. While the model was 

optimized for speed and accuracy, it lacked user 

interface components for practical deployment, 

particularly for non-technical users such as farmers. 

Fu et al. [2] explored pest classification using 

traditional CNNs, achieving reliable results with 

high-resolution pest images. Their research validated 

the effectiveness of deep learning for pest 

identification but was limited to a local, non-

interactive setup without integration into web or 

mobile platforms. This significantly constrained the 

usability and scalability of the system in real-world 

agricultural settings. 

Several earlier studies focused on classical machine 

learning and image processing techniques. Dubey and 

Singh [4] employed histogram and shape-based 

analysis to detect insect species. Although their 

method was computationally less demanding, it failed 

to maintain accuracy when dealing with diverse or 

visually similar pest classes, highlighting the 

superiority of deep learning methods for high-

variance datasets. 

Arivazhagan et al. [3] and Sladojevic et al. [11] 

applied texture-based and leaf pattern analysis 

techniques for plant disease detection. These methods 

were foundational in understanding the use of image 

data in agriculture, but the introduction of CNNs 

marked a significant improvement in precision and 

generalization. 

Deep learning, especially CNNs, has since become 

the standard for image classification tasks in 

agriculture. Simonyan and Zisserman [5] proposed 

the VGGNet architecture, which introduced deeper 

convolutional layers and small filters, leading to 

higher classification performance on complex 

datasets. Ferentinos [12] later applied various deep 

CNN models (including AlexNet, GoogLeNet, and 

VGG) for plant disease recognition. His research 

demonstrated that CNN-based models could achieve 

an accuracy of over 99% on image-based datasets of 

plant leaves. 

Mohanty et al. [8] extended this work by training a 

CNN on a large publicly available dataset of diseased 

plant leaf images. They achieved high accuracy and 

demonstrated the potential of deep learning to be 

generalized to various crop types. Brahimi et al. [9] 

introduced visualization techniques using CNNs to 

understand which regions of the image the model 

focused on during classification, contributing to 

model transparency and trust. 

Despite the growing accuracy of CNN-based models, 

a major limitation across many of these works was 

the absence of user-friendly deployment mechanisms. 

To address this, Huynh et al. [7] developed a smart 

agriculture system that integrates Django and deep 

learning. While their work introduced model 

deployment through a web interface, it lacked 

advanced user features such as secure authentication, 

password management, and real-time retraining, 

which are crucial for long-term usage in dynamic 

environments. 

Dey et al. [13] implemented a web-based crop 

disease detection system using TensorFlow and 

Flask. Though the system supported real-time 
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identification, it was designed for a limited set of 

plant diseases and lacked scalability. Moreover, their 

system did not integrate retraining features, making it 

less adaptable to evolving datasets or new pest 

categories. 

The need for robust, real-time, and secure pest 

classification systems has been consistently 

emphasized in surveys such as those by Kamilaris 

and Prenafeta-Boldú [10]. They highlighted that most 

research focuses on the model itself, while practical 

deployment, user interface, scalability, and data 

security remain underexplored. This gap presents an 

opportunity to design intelligent systems that 

combine accurate deep learning models with modern 

web frameworks to ensure accessibility and usability 

for end-users like farmers and agronomists. 

Another recent trend is the integration of AI with the 

Internet of Things (IoT) for automated agricultural 

monitoring. Lu et al. [14] proposed a CNN-IoT-based 

system for crop monitoring, showcasing the potential 

of intelligent embedded systems in agriculture. 

However, such systems often require expensive 

infrastructure and lack web-based accessibility, 

limiting their immediate adoption in rural farming 

communities. 

The proposed system in this paper addresses many of 

these limitations. It combines the strength of CNN-

based pest image classification with a scalable 

Django web framework. The application supports 

secure user registration, login, password recovery 

using OTP, dynamic model retraining, and real-time 

pest prediction via image upload. Unlike earlier 

works, this system is built with end-user accessibility 

in mind, making it suitable for both technical and 

non-technical stakeholders. Its modular architecture 

also allows for future integration with mobile apps, 

IoT devices, and multilingual support, enhancing 

adaptability and impact in diverse agricultural 

settings. 

 

III. METHODOLOGY 

 

This section outlines the complete workflow used in 

the development of the intelligent pest classification 

system. The methodology follows a systematic 

approach beginning with data preprocessing, model 

development using deep learning, integration into a 

web framework using Django, and deployment of 

secure user-interactive features. Each stage was 

designed to ensure a scalable, accurate, and user-

friendly solution capable of assisting stakeholders in 

the agricultural sector with pest identification. 

 

Dataset Collection and Preprocessing 

The development of any machine learning model 

begins with the quality and diversity of the dataset. In 

this project, a pest image dataset containing labeled 

samples from different pest categories was curated. 

Each image represents a specific pest species 

commonly found affecting crops. The dataset 

includes multiple samples per class, captured under 

varied lighting and background conditions to 

simulate real-world variability in field scenarios. 

Preprocessing of images is an essential step to ensure 

model consistency. All images were resized to a 

uniform dimension suitable for the input layer of the 

CNN. Normalization was performed to scale pixel 

intensity values between 0 and 1, which aids in faster 

convergence during training. The dataset was split 

into training, validation, and test sets using an 

80:10:10 ratio. To enhance model generalization and 

avoid overfitting, data augmentation techniques such 

as rotation, zoom, flipping, and brightness 

adjustments were applied. 

 

CNN Model Design and Training 

The core component of the system is a Convolutional 

Neural Network (CNN) designed to extract spatial 

features from the input pest images. The architecture 

of the model comprises several convolutional layers 

followed by ReLU activation functions, which allow 

the model to learn non-linear patterns. These are 

interspersed with max-pooling layers to reduce 

spatial dimensions and extract dominant features. 

After the convolutional layers, the feature maps are 

flattened and passed through dense layers to enable 

classification. A softmax activation function is used 

in the output layer, producing probability scores 

corresponding to each pest category. The model is 

trained using the categorical cross-entropy loss 

function, as the task is multi-class classification. The 

Adam optimizer was chosen for its adaptive learning 

rate capabilities and faster convergence. During 

training, metrics such as accuracy and loss were 

monitored, and training progress was visualized using 

performance plots. 

The final trained model was evaluated on the test set 

to measure its generalization ability. The model was 

then serialized and stored for integration into the 

Django-based prediction workflow. 

 

Django Web Framework Integration 

Once the CNN model was finalized, it was integrated 

into a dynamic and interactive web interface using 

Django, a high-level Python web framework. Django 

was chosen for its built-in security features, 

scalability, and seamless integration with Python-

based machine learning code. 
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The Django architecture follows the Model-View-

Template (MVT) design. Models are used to define 

database tables such as user information. Views serve 

as controllers to handle business logic, form 

submissions, and communication with the CNN 

model. Templates are used to render the frontend 

pages where users interact with the system. 

Dedicated views were created for user registration, 

login, password reset, prediction, and training. The 

CNN model was loaded at runtime, and predictions 

were executed in real-time when an image was 

uploaded by the user. The utils.py file contains helper 

functions for model inference (predict_pest()) and 

training (train_model_and_generate_plots()), 

ensuring modularity and clean code organization. 

 

User Registration, Authentication, and Role 

Management 

Security and controlled access are essential in any 

application involving sensitive data. This system 

incorporates a user authentication module where 

users must register with details such as name, login 

ID, password, email, mobile number, and location. 

Upon registration, users are marked with a “waiting” 

status and require administrative approval before 

gaining access to the system. This mechanism 

ensures that only verified users are able to use the 

pest prediction services. 

User login sessions are maintained using Django’s 

session management system. Each session stores user 

ID and name to personalize the user experience 

during interactions. Administrators can activate or 

reject user requests, providing role-based access 

control. 

 

OTP-Based Password Reset Mechanism 

To enhance security and support users who forget 

their passwords, an OTP-based password reset 

system was implemented. When a user requests a 

password reset, the system generates a six-digit OTP 

and sends it to the registered email address using 

Django’s built-in email functionality. 

The user must enter the correct OTP on a separate 

verification page before being allowed to reset the 

password. If the OTP matches, the system grants 

access to set a new password. This ensures that 

password recovery is secure and accessible only to 

legitimate users. 

 

Real-Time Pest Classification Process 

Once authenticated, users are redirected to the main 

dashboard where they can access the prediction 

module. The pest classification process begins when 

the user uploads an image using a web form. The 

image is passed to the predict_pest() function, which 

loads the pretrained CNN model and processes the 

image for prediction. 

The function returns the predicted pest species name 

and its category, which are then displayed on the user 

interface. The simplicity of the process ensures that 

users without any technical background can obtain 

pest identification results with minimal effort and 

high accuracy. 

 

Model Retraining and Performance Visualization 

To accommodate changes in pest types or 

improvements in data quality, the system includes a 

retraining module. This module is accessible to 

administrators who can trigger the retraining process 

via a dedicated interface. The 

train_model_and_generate_plots() function retrains 

the CNN model on the full dataset or an updated 

version, and generates performance plots showing 

training and validation accuracy and loss. 

These plots are stored in the media folder and 

rendered on the training results page for monitoring 

model improvements. This feature ensures that the 

system remains dynamic and responsive to changing 

agricultural patterns. 

 

IV. SYSTEM ARCHITECTURE 

The system architecture is presented in fig.1. 

 

 
 

Fig.1. System architecture 

 

The architecture of the proposed intelligent pest 

classification system is designed using a modular, 

layered approach that ensures separation of concerns, 

maintainability, and scalability. The entire 

architecture can be broken down into five major 

components: 

 

User Interface Layer 

The user interface is designed using HTML templates 

rendered through Django. It serves as the bridge 

between the user and the backend processes. The 

interface enables functionalities such as user 

registration, login, image upload, password reset via 
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OTP, and pest prediction result display. Users can 

seamlessly interact with the system via intuitive 

forms and buttons, making the system accessible to 

farmers and non-technical users. 

 

Web Framework  

The Django framework functions as the application 

logic layer. It processes form inputs, manages 

sessions, handles routing, and links the frontend with 

backend logic and models. Views handle user actions 

such as: 

• Submitting login or registration forms. 

• Uploading pest images. 

• Triggering model training. 

• Performing password recovery and OTP 

validation. 

This layer acts as the controller between the model 

and view in Django’s MVT (Model-View-Template) 

architecture. Security features such as session 

management, form validation, and URL routing are 

managed here. 

 

Model Layer (CNN + Python Modules) 

The CNN model is the brain of the application. It is 

trained on labeled pest images and saved as a 

serialized model file using libraries such as 

TensorFlow or PyTorch. Once integrated, the model 

takes an image as input and outputs the predicted pest 

category with confidence scores. The predict_pest() 

function wraps the model loading and inference 

logic, returning real-time results to the view. 

Additionally, the train_model_and_generate_plots() 

function is used to retrain the model on new data and 

generate accuracy/loss graphs that are rendered to the 

administrator. This ensures the system remains 

adaptive to new pests and improves over time. 

 

Database Layer  

The application uses Django ORM to manage user 

data. The UserRegistrationModel stores: 

• User profile information (name, email, login ID). 

• Account status (waiting or activated). 

• Location data (state, city, locality). 

• Authentication data (password, mobile number). 

This layer plays a critical role in determining access 

control, OTP verification, and session tracking for 

each user. 

 

Media and Storage Layer 

To support dynamic media handling, the system 

stores: 

• Uploaded images by users (in the media/ folder). 

• Generated output plots (accuracy/loss) from 

model training. 

• Trained CNN model files and logs for 

deployment. 

This layer supports persistence of visual assets and 

model artifacts that are critical for visualization and 

long-term tracking. 

 
 

V. IMPLEMENTATION 

 
The implementation of the proposed intelligent pest 

classification system is structured into several 

components, each playing a vital role in delivering an 

end-to-end intelligent web application. The system 

was developed using Python, Django, and 

TensorFlow/Keras for deep learning. The frontend 

was designed using HTML, Bootstrap, and Django 

templating, while SQLite was used for database 

management. 

The system includes user registration, secure login, 

OTP-based password reset, pest image upload, real-

time CNN-based prediction, model training, and 

graph visualization. Below is a comprehensive 

explanation of each implementation module with 

visual figures. 

 

5.1 Sample Dataset and Preprocessing 

The dataset consists of labeled pest images 

categorized by pest species. Images were collected in 

varying lighting and background conditions to ensure 

diversity. These images were resized, normalized, 

and augmented using techniques like rotation, 

zooming, and flipping to improve model 

generalization. The dataset was split into training, 

validation, and test sets. 

 

Fig 2:Pest Image Dataset 

 

5.2 CNN Model Training and Performance 

Visualization 

The CNN architecture was built with multiple 

convolutional and max-pooling layers, followed by 
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fully connected dense layers. The model was 

compiled using the Adam optimizer and categorical 

cross-entropy loss function. During training, the 

system logged accuracy and loss values for both 

training and validation sets. These metrics were 

plotted to visualize performance and check for 

overfitting or underfitting. 

Fig 3: Training Accuracy and Loss Graph 

 

5.3 User Registration Interface 

A secure registration module was implemented, 

allowing users to sign up by providing name, email, 

mobile, locality, address, and login credentials. 

Newly registered users were stored in the database 

with a default status of "waiting." Only after admin 

approval, users can log in and access the system 

functionalities. 

 

Fig 4: User Registration Page 

 

User Login and Session Management 

The login interface validates login ID and password. 

If the credentials match a database entry and the 

user’s status is marked as “activated,” they are 

redirected to the user dashboard. Django sessions are 

used to store login state and user data temporarily 

during the session. 

Fig 5: User Login Interface 

 

5.5 Pest Image Upload for Prediction 

Once logged in, users can navigate to the prediction 

module and upload a pest image using the provided 

form. The uploaded image is passed to the 

predict_pest() function, which uses the pretrained 

CNN model to classify the pest. The prediction result 

and pest category are returned and displayed on the 

interface. 

Fig 6: Pest Image Upload for Prediction 

 

5.6 Pest Classification Output 

The result of the prediction is displayed immediately 

after image upload. The system provides the 

predicted pest name and its associated category (e.g., 

damaging, non-damaging). This result helps users 

identify pest types quickly and take preventive 

measures. 

Fig 7: Pest Prediction Output 
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Fig 8: Pest Prediction Output 

 

5.7 Admin-Controlled Model Retraining 

The system allows model retraining from the admin 

panel using the latest dataset. This is useful when 

new pest images are added. The 

train_model_and_generate_plots() function is 

triggered to retrain the model and save new 

performance graphs. This ensures the model remains 

up-to-date with changing data. 

 

5.8 OTP-Based Password Reset 

For users who forget their passwords, an OTP-based 

reset mechanism is implemented. Upon entering a 

registered email, a 6-digit OTP is sent. Once verified, 

the user can reset their password securely. 

 

VI. CONCLUSION 

In this work, we presented an intelligent and user-

friendly web-based pest classification system that 

leverages the power of Convolutional Neural 

Networks (CNNs) integrated with the Django web 

framework. The primary objective was to assist 

farmers and agricultural stakeholders in the timely 

identification of pest species, thereby enabling early 

intervention and promoting sustainable agricultural 

practices.The developed system effectively combines 

deep learning for accurate pest image classification 

with a robust web interface that facilitates user 

interaction. It supports functionalities such as user 

registration, secure login, OTP-based password 

recovery, real-time image upload, prediction display, 

and retraining of the model with updated datasets. By 

offering these features through a web platform, the 

system makes AI-driven pest identification accessible 

even to non-technical users in rural and remote 

regions.The CNN model trained on diverse pest 

datasets demonstrated high prediction accuracy and 

robustness, further validated through performance 

graphs generated during the training phase. The 

incorporation of model retraining functionality 

ensures that the system can evolve with the addition 

of new pest images, making it adaptable and scalable 

in real-world applications.Additionally, the Django 

framework provided seamless integration with the 

trained model, enabling a responsive and secure 

backend. OTP-based security features and admin-

controlled access mechanisms enhance the 

trustworthiness of the application for broader 

deployment.Overall, this system stands as a practical 

solution that bridges the gap between AI research and 

field-level application in agriculture. It not only 

empowers users with real-time pest recognition tools 

but also contributes to reducing pesticide misuse and 

crop loss, thus fostering sustainable farming 

ecosystems. 
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