
 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

July 2025, Volume 15, ISSUE 3

UGC Approved Journal

Page | 41

Intelligent Pest Classification Using Convolutional Neural Networks

Integrated with Django Web Framework

1D. SRAVYA, 2SK. RESHMA, 3D. SAPTHAGIRI KUMAR

1,2,3 Asst. Prof., Department of CSE, MAM Women’s Engineering College, Narasaraopet, palnadu,A.P., India.

Abstract-

The growing demand for sustainable agriculture

necessitates the integration of intelligent systems to

automate crop monitoring and pest control. In this

paper, we propose a web-based intelligent pest

classification system that leverages deep learning

techniques, specifically Convolutional Neural

Networks (CNN), for accurate image-based pest

identification. The system is built using the Django

web framework, enabling end-users—such as

farmers, researchers, and agricultural workers—to

upload pest images and receive instant classification

results.The backend model is trained on a labeled

dataset of pest images and optimized using modern

deep learning practices. Upon training, the model is

capable of classifying various pest species with high

accuracy. The application also includes user-centric

features such as registration, secure login, and

password recovery via OTP-based email verification,

enhancing the system’s usability and security. The

training module allows administrators to retrain the

model periodically, and visual performance metrics

such as accuracy graphs and loss curves are displayed

for interpretability.The integration of a deep learning

model with a user-friendly web interface

demonstrates the feasibility of deploying intelligent

agricultural tools at scale. This work contributes to

digital agriculture by providing a robust, accessible,

and scalable solution for pest detection and

management.

Keywords

Pest Classification, Deep Learning, Convolutional

Neural Networks (CNN), Django, Web Application,

Smart Agriculture, Image Recognition, OTP

Verification, Sustainable Farming, AI in Agriculture

I. INTRODUCTION

Agriculture remains one of the most essential sectors

globally, ensuring food supply, employment, and

economic stability. However, one of the persistent

challenges that agricultural communities face is the

infestation of crops by pests. These pests not only

reduce the quality and quantity of agricultural output

but also lead to increased reliance on chemical

pesticides, which can harm the environment and

public health. According to recent studies, pest-

related losses account for a significant portion of

global crop damage annually, directly affecting

farmers' income and food availability [3], [4].

Traditional pest identification methods depend

heavily on manual observation and domain expertise.

These methods are not only time-consuming but also

suffer from inconsistencies due to human error and

subjective interpretation. Moreover, the availability

of trained entomologists in rural or remote areas is

often limited. These limitations necessitate the

development of automated, intelligent solutions for

real-time pest detection and classification that are

both scalable and accessible [8], [9].

With the advancement of Artificial Intelligence (AI),

deep learning—particularly Convolutional Neural

Networks (CNNs)—has revolutionized image

classification across numerous domains. In

agriculture, CNNs have been successfully applied to

tasks such as leaf disease detection, fruit quality

analysis, and pest classification due to their ability to

learn complex visual features from image data [1],

[2], [5], [10]. Unlike traditional machine learning

models that require handcrafted features, CNNs

automatically extract and learn hierarchical features,

making them highly effective for pest detection tasks

that involve diverse visual patterns.

In parallel, modern web development frameworks

like Django have made it easier to deploy machine

learning models in user-friendly web interfaces.

Django, a high-level Python web framework,

promotes rapid development, clean architecture, and

integration with AI libraries such as TensorFlow and

PyTorch [6], [7]. When combined with deep learning,

Django enables the creation of intelligent web

applications that bring powerful AI models to end-

users—be it farmers, agricultural officers, or

researchers—through simple web browsers without

needing technical expertise.

In this paper, we propose an intelligent, web-based

pest classification system that integrates a CNN

http://www.ijbar.org/

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

July 2025, Volume 15, ISSUE 3

UGC Approved Journal

Page | 42

model with the Django framework to perform real-

time pest image classification. Users can register into

the system, securely log in, upload pest images, and

receive instant classification predictions. The

platform also includes features such as OTP-based

email verification for password reset, enhancing

security and accessibility [13]. An administrative

interface allows retraining of the CNN model on

updated datasets and displays training performance

through visual plots like accuracy and loss curves [6],

[12]. This modular design makes the system

adaptable for future enhancements, such as support

for multiple languages, larger datasets, and mobile

deployment.

The proposed system contributes significantly to

smart agriculture and precision farming by offering a

scalable, cost-effective, and intelligent tool for

automated pest detection. By reducing dependence on

manual pest identification and facilitating early

intervention, the platform can help minimize crop

losses and promote sustainable agricultural practices

[9], [11], [14]. The integration of deep learning and

web-based technology ensures that this solution can

be deployed in real-world agricultural environments,

empowering farmers with the tools needed for

efficient pest management.

II. LITEARTURE SURVEY

Agricultural productivity is significantly impacted by

pest infestations, which lead to substantial economic

losses worldwide. Early and accurate pest detection is

essential for effective pest control, reducing crop

damage, and minimizing the overuse of pesticides. In

recent years, numerous studies have focused on

automating pest identification using computer vision

and machine learning techniques. This section

discusses key research works in pest detection, deep

learning applications in agriculture, and web-based

systems for intelligent pest classification.

Li et al. [1] presented a pest classification system

based on an improved YOLOv5 deep learning model.

Their approach demonstrated efficient real-time

object detection and localization, especially in

complex farm environments. While the model was

optimized for speed and accuracy, it lacked user

interface components for practical deployment,

particularly for non-technical users such as farmers.

Fu et al. [2] explored pest classification using

traditional CNNs, achieving reliable results with

high-resolution pest images. Their research validated

the effectiveness of deep learning for pest

identification but was limited to a local, non-

interactive setup without integration into web or

mobile platforms. This significantly constrained the

usability and scalability of the system in real-world

agricultural settings.

Several earlier studies focused on classical machine

learning and image processing techniques. Dubey and

Singh [4] employed histogram and shape-based

analysis to detect insect species. Although their

method was computationally less demanding, it failed

to maintain accuracy when dealing with diverse or

visually similar pest classes, highlighting the

superiority of deep learning methods for high-

variance datasets.

Arivazhagan et al. [3] and Sladojevic et al. [11]

applied texture-based and leaf pattern analysis

techniques for plant disease detection. These methods

were foundational in understanding the use of image

data in agriculture, but the introduction of CNNs

marked a significant improvement in precision and

generalization.

Deep learning, especially CNNs, has since become

the standard for image classification tasks in

agriculture. Simonyan and Zisserman [5] proposed

the VGGNet architecture, which introduced deeper

convolutional layers and small filters, leading to

higher classification performance on complex

datasets. Ferentinos [12] later applied various deep

CNN models (including AlexNet, GoogLeNet, and

VGG) for plant disease recognition. His research

demonstrated that CNN-based models could achieve

an accuracy of over 99% on image-based datasets of

plant leaves.

Mohanty et al. [8] extended this work by training a

CNN on a large publicly available dataset of diseased

plant leaf images. They achieved high accuracy and

demonstrated the potential of deep learning to be

generalized to various crop types. Brahimi et al. [9]

introduced visualization techniques using CNNs to

understand which regions of the image the model

focused on during classification, contributing to

model transparency and trust.

Despite the growing accuracy of CNN-based models,

a major limitation across many of these works was

the absence of user-friendly deployment mechanisms.

To address this, Huynh et al. [7] developed a smart

agriculture system that integrates Django and deep

learning. While their work introduced model

deployment through a web interface, it lacked

advanced user features such as secure authentication,

password management, and real-time retraining,

which are crucial for long-term usage in dynamic

environments.

Dey et al. [13] implemented a web-based crop

disease detection system using TensorFlow and

Flask. Though the system supported real-time

http://www.ijbar.org/

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

July 2025, Volume 15, ISSUE 3

UGC Approved Journal

Page | 43

identification, it was designed for a limited set of

plant diseases and lacked scalability. Moreover, their

system did not integrate retraining features, making it

less adaptable to evolving datasets or new pest

categories.

The need for robust, real-time, and secure pest

classification systems has been consistently

emphasized in surveys such as those by Kamilaris

and Prenafeta-Boldú [10]. They highlighted that most

research focuses on the model itself, while practical

deployment, user interface, scalability, and data

security remain underexplored. This gap presents an

opportunity to design intelligent systems that

combine accurate deep learning models with modern

web frameworks to ensure accessibility and usability

for end-users like farmers and agronomists.

Another recent trend is the integration of AI with the

Internet of Things (IoT) for automated agricultural

monitoring. Lu et al. [14] proposed a CNN-IoT-based

system for crop monitoring, showcasing the potential

of intelligent embedded systems in agriculture.

However, such systems often require expensive

infrastructure and lack web-based accessibility,

limiting their immediate adoption in rural farming

communities.

The proposed system in this paper addresses many of

these limitations. It combines the strength of CNN-

based pest image classification with a scalable

Django web framework. The application supports

secure user registration, login, password recovery

using OTP, dynamic model retraining, and real-time

pest prediction via image upload. Unlike earlier

works, this system is built with end-user accessibility

in mind, making it suitable for both technical and

non-technical stakeholders. Its modular architecture

also allows for future integration with mobile apps,

IoT devices, and multilingual support, enhancing

adaptability and impact in diverse agricultural

settings.

III. METHODOLOGY

This section outlines the complete workflow used in

the development of the intelligent pest classification

system. The methodology follows a systematic

approach beginning with data preprocessing, model

development using deep learning, integration into a

web framework using Django, and deployment of

secure user-interactive features. Each stage was

designed to ensure a scalable, accurate, and user-

friendly solution capable of assisting stakeholders in

the agricultural sector with pest identification.

Dataset Collection and Preprocessing

The development of any machine learning model

begins with the quality and diversity of the dataset. In

this project, a pest image dataset containing labeled

samples from different pest categories was curated.

Each image represents a specific pest species

commonly found affecting crops. The dataset

includes multiple samples per class, captured under

varied lighting and background conditions to

simulate real-world variability in field scenarios.

Preprocessing of images is an essential step to ensure

model consistency. All images were resized to a

uniform dimension suitable for the input layer of the

CNN. Normalization was performed to scale pixel

intensity values between 0 and 1, which aids in faster

convergence during training. The dataset was split

into training, validation, and test sets using an

80:10:10 ratio. To enhance model generalization and

avoid overfitting, data augmentation techniques such

as rotation, zoom, flipping, and brightness

adjustments were applied.

CNN Model Design and Training

The core component of the system is a Convolutional

Neural Network (CNN) designed to extract spatial

features from the input pest images. The architecture

of the model comprises several convolutional layers

followed by ReLU activation functions, which allow

the model to learn non-linear patterns. These are

interspersed with max-pooling layers to reduce

spatial dimensions and extract dominant features.

After the convolutional layers, the feature maps are

flattened and passed through dense layers to enable

classification. A softmax activation function is used

in the output layer, producing probability scores

corresponding to each pest category. The model is

trained using the categorical cross-entropy loss

function, as the task is multi-class classification. The

Adam optimizer was chosen for its adaptive learning

rate capabilities and faster convergence. During

training, metrics such as accuracy and loss were

monitored, and training progress was visualized using

performance plots.

The final trained model was evaluated on the test set

to measure its generalization ability. The model was

then serialized and stored for integration into the

Django-based prediction workflow.

Django Web Framework Integration

Once the CNN model was finalized, it was integrated

into a dynamic and interactive web interface using

Django, a high-level Python web framework. Django

was chosen for its built-in security features,

scalability, and seamless integration with Python-

based machine learning code.

http://www.ijbar.org/

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

July 2025, Volume 15, ISSUE 3

UGC Approved Journal

Page | 44

The Django architecture follows the Model-View-

Template (MVT) design. Models are used to define

database tables such as user information. Views serve

as controllers to handle business logic, form

submissions, and communication with the CNN

model. Templates are used to render the frontend

pages where users interact with the system.

Dedicated views were created for user registration,

login, password reset, prediction, and training. The

CNN model was loaded at runtime, and predictions

were executed in real-time when an image was

uploaded by the user. The utils.py file contains helper

functions for model inference (predict_pest()) and

training (train_model_and_generate_plots()),

ensuring modularity and clean code organization.

User Registration, Authentication, and Role

Management

Security and controlled access are essential in any

application involving sensitive data. This system

incorporates a user authentication module where

users must register with details such as name, login

ID, password, email, mobile number, and location.

Upon registration, users are marked with a “waiting”

status and require administrative approval before

gaining access to the system. This mechanism

ensures that only verified users are able to use the

pest prediction services.

User login sessions are maintained using Django’s

session management system. Each session stores user

ID and name to personalize the user experience

during interactions. Administrators can activate or

reject user requests, providing role-based access

control.

OTP-Based Password Reset Mechanism

To enhance security and support users who forget

their passwords, an OTP-based password reset

system was implemented. When a user requests a

password reset, the system generates a six-digit OTP

and sends it to the registered email address using

Django’s built-in email functionality.

The user must enter the correct OTP on a separate

verification page before being allowed to reset the

password. If the OTP matches, the system grants

access to set a new password. This ensures that

password recovery is secure and accessible only to

legitimate users.

Real-Time Pest Classification Process

Once authenticated, users are redirected to the main

dashboard where they can access the prediction

module. The pest classification process begins when

the user uploads an image using a web form. The

image is passed to the predict_pest() function, which

loads the pretrained CNN model and processes the

image for prediction.

The function returns the predicted pest species name

and its category, which are then displayed on the user

interface. The simplicity of the process ensures that

users without any technical background can obtain

pest identification results with minimal effort and

high accuracy.

Model Retraining and Performance Visualization

To accommodate changes in pest types or

improvements in data quality, the system includes a

retraining module. This module is accessible to

administrators who can trigger the retraining process

via a dedicated interface. The

train_model_and_generate_plots() function retrains

the CNN model on the full dataset or an updated

version, and generates performance plots showing

training and validation accuracy and loss.

These plots are stored in the media folder and

rendered on the training results page for monitoring

model improvements. This feature ensures that the

system remains dynamic and responsive to changing

agricultural patterns.

IV. SYSTEM ARCHITECTURE

The system architecture is presented in fig.1.

Fig.1. System architecture

The architecture of the proposed intelligent pest

classification system is designed using a modular,

layered approach that ensures separation of concerns,

maintainability, and scalability. The entire

architecture can be broken down into five major

components:

User Interface Layer

The user interface is designed using HTML templates

rendered through Django. It serves as the bridge

between the user and the backend processes. The

interface enables functionalities such as user

registration, login, image upload, password reset via

http://www.ijbar.org/

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

July 2025, Volume 15, ISSUE 3

UGC Approved Journal

Page | 45

OTP, and pest prediction result display. Users can

seamlessly interact with the system via intuitive

forms and buttons, making the system accessible to

farmers and non-technical users.

Web Framework

The Django framework functions as the application

logic layer. It processes form inputs, manages

sessions, handles routing, and links the frontend with

backend logic and models. Views handle user actions

such as:

• Submitting login or registration forms.

• Uploading pest images.

• Triggering model training.

• Performing password recovery and OTP

validation.

This layer acts as the controller between the model

and view in Django’s MVT (Model-View-Template)

architecture. Security features such as session

management, form validation, and URL routing are

managed here.

Model Layer (CNN + Python Modules)

The CNN model is the brain of the application. It is

trained on labeled pest images and saved as a

serialized model file using libraries such as

TensorFlow or PyTorch. Once integrated, the model

takes an image as input and outputs the predicted pest

category with confidence scores. The predict_pest()

function wraps the model loading and inference

logic, returning real-time results to the view.

Additionally, the train_model_and_generate_plots()

function is used to retrain the model on new data and

generate accuracy/loss graphs that are rendered to the

administrator. This ensures the system remains

adaptive to new pests and improves over time.

Database Layer

The application uses Django ORM to manage user

data. The UserRegistrationModel stores:

• User profile information (name, email, login ID).

• Account status (waiting or activated).

• Location data (state, city, locality).

• Authentication data (password, mobile number).

This layer plays a critical role in determining access

control, OTP verification, and session tracking for

each user.

Media and Storage Layer

To support dynamic media handling, the system

stores:

• Uploaded images by users (in the media/ folder).

• Generated output plots (accuracy/loss) from

model training.

• Trained CNN model files and logs for

deployment.

This layer supports persistence of visual assets and

model artifacts that are critical for visualization and

long-term tracking.

V. IMPLEMENTATION

The implementation of the proposed intelligent pest

classification system is structured into several

components, each playing a vital role in delivering an

end-to-end intelligent web application. The system

was developed using Python, Django, and

TensorFlow/Keras for deep learning. The frontend

was designed using HTML, Bootstrap, and Django

templating, while SQLite was used for database

management.

The system includes user registration, secure login,

OTP-based password reset, pest image upload, real-

time CNN-based prediction, model training, and

graph visualization. Below is a comprehensive

explanation of each implementation module with

visual figures.

5.1 Sample Dataset and Preprocessing

The dataset consists of labeled pest images

categorized by pest species. Images were collected in

varying lighting and background conditions to ensure

diversity. These images were resized, normalized,

and augmented using techniques like rotation,

zooming, and flipping to improve model

generalization. The dataset was split into training,

validation, and test sets.

Fig 2:Pest Image Dataset

5.2 CNN Model Training and Performance

Visualization

The CNN architecture was built with multiple

convolutional and max-pooling layers, followed by

http://www.ijbar.org/

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

July 2025, Volume 15, ISSUE 3

UGC Approved Journal

Page | 46

fully connected dense layers. The model was

compiled using the Adam optimizer and categorical

cross-entropy loss function. During training, the

system logged accuracy and loss values for both

training and validation sets. These metrics were

plotted to visualize performance and check for

overfitting or underfitting.

Fig 3: Training Accuracy and Loss Graph

5.3 User Registration Interface

A secure registration module was implemented,

allowing users to sign up by providing name, email,

mobile, locality, address, and login credentials.

Newly registered users were stored in the database

with a default status of "waiting." Only after admin

approval, users can log in and access the system

functionalities.

Fig 4: User Registration Page

User Login and Session Management

The login interface validates login ID and password.

If the credentials match a database entry and the

user’s status is marked as “activated,” they are

redirected to the user dashboard. Django sessions are

used to store login state and user data temporarily

during the session.

Fig 5: User Login Interface

5.5 Pest Image Upload for Prediction

Once logged in, users can navigate to the prediction

module and upload a pest image using the provided

form. The uploaded image is passed to the

predict_pest() function, which uses the pretrained

CNN model to classify the pest. The prediction result

and pest category are returned and displayed on the

interface.

Fig 6: Pest Image Upload for Prediction

5.6 Pest Classification Output

The result of the prediction is displayed immediately

after image upload. The system provides the

predicted pest name and its associated category (e.g.,

damaging, non-damaging). This result helps users

identify pest types quickly and take preventive

measures.

Fig 7: Pest Prediction Output

http://www.ijbar.org/

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

July 2025, Volume 15, ISSUE 3

UGC Approved Journal

Page | 47

Fig 8: Pest Prediction Output

5.7 Admin-Controlled Model Retraining

The system allows model retraining from the admin

panel using the latest dataset. This is useful when

new pest images are added. The

train_model_and_generate_plots() function is

triggered to retrain the model and save new

performance graphs. This ensures the model remains

up-to-date with changing data.

5.8 OTP-Based Password Reset

For users who forget their passwords, an OTP-based

reset mechanism is implemented. Upon entering a

registered email, a 6-digit OTP is sent. Once verified,

the user can reset their password securely.

VI. CONCLUSION

In this work, we presented an intelligent and user-

friendly web-based pest classification system that

leverages the power of Convolutional Neural

Networks (CNNs) integrated with the Django web

framework. The primary objective was to assist

farmers and agricultural stakeholders in the timely

identification of pest species, thereby enabling early

intervention and promoting sustainable agricultural

practices.The developed system effectively combines

deep learning for accurate pest image classification

with a robust web interface that facilitates user

interaction. It supports functionalities such as user

registration, secure login, OTP-based password

recovery, real-time image upload, prediction display,

and retraining of the model with updated datasets. By

offering these features through a web platform, the

system makes AI-driven pest identification accessible

even to non-technical users in rural and remote

regions.The CNN model trained on diverse pest

datasets demonstrated high prediction accuracy and

robustness, further validated through performance

graphs generated during the training phase. The

incorporation of model retraining functionality

ensures that the system can evolve with the addition

of new pest images, making it adaptable and scalable

in real-world applications.Additionally, the Django

framework provided seamless integration with the

trained model, enabling a responsive and secure

backend. OTP-based security features and admin-

controlled access mechanisms enhance the

trustworthiness of the application for broader

deployment.Overall, this system stands as a practical

solution that bridges the gap between AI research and

field-level application in agriculture. It not only

empowers users with real-time pest recognition tools

but also contributes to reducing pesticide misuse and

crop loss, thus fostering sustainable farming

ecosystems.

REFERENCES

1. H. Li, G. Xu, D. Xu, and C. Wang, “Pest

Detection and Classification Based on

Improved YOLOv5 Model,” IEEE Access,

vol. 9, pp. 155169–155177, 2021. doi:

10.1109/ACCESS.2021.3129477

2. J. Fu, J. Zhang, and B. Zhang, “Image-

Based Pest Detection Using Convolutional

Neural Network,” in Proc. IEEE Int. Conf.

Big Data (Big Data), Seattle, WA, USA,

2018, pp. 3680–3683. doi:

10.1109/BigData.2018.8622410

3. K. Arivazhagan, R. N. Shebiah, S. Ananthi,

and S. V. Varthini, “Detection of unhealthy

region of plant leaves and classification of

plant leaf diseases using texture features,”

Agricultural Engineering International:

CIGR Journal, vol. 15, no. 1, pp. 211–217,

2013.

4. S. R. Dubey and A. Singh, “Pest

identification in crop fields using image

processing,” in Proc. 2016 Int. Conf. Signal

Processing, Communication, Power and

Embedded System (SCOPES),

Paralakhemundi, India, 2016, pp. 1335–

1340. doi: 10.1109/SCOPES.2016.7955866

5. K. Simonyan and A. Zisserman, “Very Deep

Convolutional Networks for Large-Scale

Image Recognition,” arXiv preprint

arXiv:1409.1556, 2015. [Online]. Available:

https://arxiv.org/abs/1409.1556

6. M. Abadi et al., “TensorFlow: A system for

large-scale machine learning,” in Proc. 12th

USENIX Symp. Operating Systems Design

http://www.ijbar.org/
https://arxiv.org/abs/1409.1556

 www.ijbar.org

ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

July 2025, Volume 15, ISSUE 3

UGC Approved Journal

Page | 48

and Implementation (OSDI 16), Savannah,

GA, USA, 2016, pp. 265–283.

7. B. Huynh, D. Mac, and A. Nguyen,

“Building a Smart Agricultural System using

Django Framework and Deep Learning,” in

2020 17th Int. Conf. Electrical

Engineering/Electronics, Computer,

Telecommunications and Information

Technology (ECTI-CON), Phuket, Thailand,

2020, pp. 472–475. doi: 10.1109/ECTI-

CON49241.2020.9158136

8. M. Mohanty, D. P. Hughes, and M. Salathé,

“Using Deep Learning for Image-Based

Plant Disease Detection,” Frontiers in Plant

Science, vol. 7, p. 1419, 2016. doi:

10.3389/fpls.2016.01419

9. A. Brahimi, K. Boukhalfa, and A.

Moussaoui, “Deep Learning for Tomato

Diseases: Classification and Symptoms

Visualization,” Applied Artificial

Intelligence, vol. 31, no. 4, pp. 299–315,

2017. doi: 10.1080/08839514.2017.1315516

10. T. Kamilaris and F. Prenafeta-Boldú, “Deep

learning in agriculture: A survey,”

Computers and Electronics in Agriculture,

vol. 147, pp. 70–90, 2018. doi:

10.1016/j.compag.2018.02.016

11. G. Sladojevic, M. Arsenovic, A. Anderla, D.

Culibrk, and D. Stefanovic, “Deep Neural

Networks Based Recognition of Plant

Diseases by Leaf Image Classification,”

Computational Intelligence and

Neuroscience, vol. 2016, pp. 1–11, 2016.

doi: 10.1155/2016/3289801

12. P. Ferentinos, “Deep learning models for

plant disease detection and diagnosis,”

Computers and Electronics in Agriculture,

vol. 145, pp. 311–318, 2018. doi:

10.1016/j.compag.2018.01.009

13. S. C. Dey, N. N. Acharjee, and M. H. Kabir,

“Design and implementation of a real-time

web-based crop disease identification

system using deep learning,” in 2021 Int.

Conf. Automation, Control and

Mechatronics for Industry 4.0 (ACMI),

Rajshahi, Bangladesh, 2021, pp. 1–6. doi:

10.1109/ACMI53878.2021.9528273

14. J. Lu, V. Behbood, and T. Ravindran, “Smart

Agriculture System Design Using

Convolutional Neural Network and IoT,” in

2022 6th Int. Conf. Intelligent Computing

and Control Systems (ICICCS), Madurai,

India, 2022, pp. 1146–1151. doi:

10.1109/ICICCS53718.2022.9788484

http://www.ijbar.org/

